ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены высоты AA1 и BB1. Найдите AC, если
  а)  AA1 = 4,  BB1 = 5,  BC = 6;
  б)  A1C = 8,  B1C = 5,  BB1 = 12.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 512]      



Задача 53632

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AA1 и BB1. Найдите AC, если
  а)  AA1 = 4,  BB1 = 5,  BC = 6;
  б)  A1C = 8,  B1C = 5,  BB1 = 12.

Прислать комментарий     Решение

Задача 55075

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

Прислать комментарий     Решение

Задача 66809

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Автор: Dadgarnia A.

В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.
Прислать комментарий     Решение


Задача 67118

Темы:   [ Вневписанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9,10,11

Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.
Прислать комментарий     Решение


Задача 115629

Темы:   [ Касающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

В угол вписаны касающиеся внешним образом окружности радиусов r и R  (r < R).  Первая из них касается сторон угла в точках A и B. Найдите AB.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .