|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$. На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём MN || BC. На отрезке MN взята точка P, причём MP = 1/3 MN. Прямая AP пересекает сторону BC в точке Q. Докажите, что BQ = 1/3 BC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 350]
Докажите, что графики функций y = x² и y = 2x² являются подобными фигурами.
На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём MN || BC. На отрезке MN взята точка P, причём MP = 1/3 MN. Прямая AP пересекает сторону BC в точке Q. Докажите, что BQ = 1/3 BC.
а) прямые la, lb и lc пересекаются в одной точке Q; б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 350] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|