Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

Вниз   Решение


Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3.

ВверхВниз   Решение


Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Докажите, что точки M, I, N лежат на одной прямой тогда и только тогда, когда  AC + BC = 3AB.

ВверхВниз   Решение


Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

ВверхВниз   Решение


Докажите, что предпоследняя цифра степени тройки всегда чётна.

ВверхВниз   Решение


В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции.

ВверхВниз   Решение


Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

ВверхВниз   Решение


Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.

ВверхВниз   Решение


Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5294]      



Задача 53587

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

Прислать комментарий     Решение


Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 53882

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Прислать комментарий     Решение

Задача 54237

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Задача 54243

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Из одной точки проведены к данной прямой перпендикуляр и две наклонные.
Найдите длину перпендикуляра, если наклонные равны 41 и 50, а их проекции на данную прямую относятся как  3 : 10.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5294]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .