Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Вниз   Решение


Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3.

ВверхВниз   Решение


Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

ВверхВниз   Решение


Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Докажите, что точки M, I, N лежат на одной прямой тогда и только тогда, когда  AC + BC = 3AB.

ВверхВниз   Решение


Докажите, что предпоследняя цифра степени тройки всегда чётна.

ВверхВниз   Решение


В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции.

ВверхВниз   Решение


Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

ВверхВниз   Решение


Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.

ВверхВниз   Решение


Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5298]      



Задача 53587

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

Прислать комментарий     Решение


Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 53882

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Прислать комментарий     Решение

Задача 54237

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Задача 54243

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Из одной точки проведены к данной прямой перпендикуляр и две наклонные.
Найдите длину перпендикуляра, если наклонные равны 41 и 50, а их проекции на данную прямую относятся как  3 : 10.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .