Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?

Вниз   Решение


Внутри окружности радиуса R расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не превосходит n2R2.

ВверхВниз   Решение


Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

ВверхВниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

ВверхВниз   Решение


В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  ∠ABC = 20°.  На равных сторонах CB и AB взяты соответственно точки P и Q так, что  ∠PAC = 50°  и  ∠QCA = 60°.
Докажите, что  ∠PQC = 30°.

ВверхВниз   Решение


Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.

ВверхВниз   Решение


Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

ВверхВниз   Решение


Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

Вверх   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 831]      



Задача 53420

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Через точку, не лежащую на данной прямой, проведите с помощью циркуля и линейки прямую, параллельную данной.

Прислать комментарий     Решение

Задача 53730

Темы:   [ Вневписанные окружности ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Прислать комментарий     Решение

Задача 53958

Темы:   [ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

Прислать комментарий     Решение

Задача 56472

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 2+
Классы: 9

а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.

Прислать комментарий     Решение

Задача 86488

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 7,8

Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если  ВМ = 8 см,  KC = 1 см  и  АВ > ВС.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .