Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1  (при k = 1, 2, 3, ...)  получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)

Вниз   Решение


Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

ВверхВниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 496]      



Задача 54514

Темы:   [ Метод ГМТ ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 2+
Классы: 8,9

Постройте окружность данного радиуса, проходящую через две данные точки.

Прислать комментарий     Решение


Задача 52576

Темы:   [ Метод ГМТ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Постройте прямоугольный треугольник по гипотенузе и высоте, опущенной из вершины прямого угла на гипотенузу.

Прислать комментарий     Решение

Задача 53386

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении  2 : 5  (меньшая часть – при гипотенузе). Найдите этот угол.

Прислать комментарий     Решение

Задача 54039

Темы:   [ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

Прислать комментарий     Решение

Задача 54058

Темы:   [ Биссектриса угла (ГМТ) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .