ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Найдите площадь трапеции.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 [Всего задач: 129]      



Задача 54278

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 105086

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь многоугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь трапеции ]
[ Геометрия на клетчатой бумаге ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10,11

На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.

Прислать комментарий     Решение

Задача 111642

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение площадей подобных треугольников ]
[ Площадь трапеции ]
Сложность: 5-
Классы: 8,9,10,11

Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
Прислать комментарий     Решение


Задача 111206

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Средняя линия треугольника ]
[ Площадь и ортогональная проекция ]
[ Симметрия относительно плоскости ]
[ Площадь трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .