Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Вниз   Решение


Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

ВверхВниз   Решение


Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?

ВверхВниз   Решение


Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.

ВверхВниз   Решение


Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .

ВверхВниз   Решение


В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 53498

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос стороны, диагонали и т.п. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Сумма углов при одном из оснований трапеции равна 90°.
Докажите, что отрезок, соединяющий середины оснований трапеции, равен полуразности оснований.

Прислать комментарий     Решение

Задача 54175

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Найдите основания и меньшую боковую сторону трапеции.

Прислать комментарий     Решение

Задача 54278

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 115701

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°. Найдите высоту.

Прислать комментарий     Решение

Задача 54294

Темы:   [ Трапеции с суммой углов при основании 90╟ ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .