ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Решите уравнения а) φ(x) = 2; б) φ(x) = 8; в) φ(x) = 12; г) φ(x) = 14. Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте? Пусть z = x + iy, w = u + iv. Найдите На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
Докажите, что при центральной симметрии окружность переходит в окружность.
Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.
Вычислите Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .
Сфера с центром в точке O проходит через вершины A , B и C
треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках
K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и
AB:CD = 4
В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.
|
Страница: 1 2 >> [Всего задач: 6]
Сумма углов при одном из оснований трапеции равна 90°.
Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°.
Отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°. Найдите высоту.
В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 90o. Точка N лежит на основании BC, причём BN : BC = 2 : 3. Точка M лежит на основании AD, прямая MN параллельна боковой стороне AB и делит площадь трапеции пополам. Найдите AB : BC.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке