Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Даны отрезки a и b. Постройте такой отрезок x, что

$\displaystyle \root$4$\displaystyle \of$x = $\displaystyle \root$4$\displaystyle \of$a + $\displaystyle \root$4$\displaystyle \of$b.

Вниз   Решение


Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

ВверхВниз   Решение


На какое наименьшее число тетраэдров можно разбить куб?

ВверхВниз   Решение


Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.

ВверхВниз   Решение


Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.

ВверхВниз   Решение


Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

ВверхВниз   Решение


Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.

ВверхВниз   Решение


Углы при основании AD трапеции ABCD равны 2$ \alpha$ и 2$ \beta$. Докажите, что трапеция описанная тогда и только тогда, когда $ {\frac{BC}{AD}}$ = tg$ \alpha$tg$ \beta$.

ВверхВниз   Решение


Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

ВверхВниз   Решение


Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?

ВверхВниз   Решение


В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°.

ВверхВниз   Решение


В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой,  AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1280]      



Задача 54375

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На окружности по разные стороны от диаметра AB расположены точки C и D. Известно, что  AC = 4,  BD = ,  а площадь треугольника ABC вдвое больше площади треугольника CBD. Найдите радиус окружности.

Прислать комментарий     Решение

Задача 54384

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В окружность диаметра 1 вписан четырёхугольник ABCD, у которого угол D прямой,  AB = BC.
Найдите площадь четырёхугольника ABCD, если его периметр равен  .

Прислать комментарий     Решение

Задача 54385

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой,  AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.

Прислать комментарий     Решение

Задача 54675

Тема:   [ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Окружность касается стороны BC треугольника ABC в точке M, стороны AC — в точке N, а сторону AB пересекает в точках K и L, причём KLMN — квадрат. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Задача 54789

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1280]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .