ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1659]      



Задача 54258

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

Прислать комментарий     Решение

Задача 54669

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Прислать комментарий     Решение


Задача 54699

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

Прислать комментарий     Решение


Задача 55718

Темы:   [ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3-
Классы: 8,9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Прислать комментарий     Решение

Задача 60629

Темы:   [ Целочисленные треугольники ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .