ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H, причём CH = C1H и BH = 2B1H. Найдите угол A. Решение |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 401]
Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём ∠AKB = 90°,
∠CKB = 180° – ∠C.
Дан ромб KLMN. На продолжении стороны KN за точку N взята точка P так, что KP = 40. Прямые KM и LP пересекаются в точке O. Точки K, L и O лежат на окружности радиуса 15 с центром на отрезке KP. Найдите KM.
В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H, причём CH = C1H и BH = 2B1H. Найдите угол A.
Две окружности пересекаются в точках A и B. Хорда CD первой окружности имеет с хордой EF второй окружности общую точку M. Известно, что BM = 2, AB = 3CM = 9EM, MD = 2CM, MF = 6CM. Какие значения может принимать длина отрезка AM?
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|