ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой. |
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 829]
На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы
треугольников BDC и ADC.
Докажите, что перпендикуляры, опущенные из точек A1, B1, C1 на стороны BC, CA, AB треугольника ABC, пересекаются в одной точке тогда и только тогда, когда A1B² + C1A² + B1C² = B1A² + A1C² + C1B² (теорема Карно).
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.
Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC (∠B = 90°), касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|