Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Вниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

ВверхВниз   Решение


Точка M лежит на стороне BC параллелограмма ABCD с углом 45o при вершине A, причём $ \angle$AMD = 90o и BM : MC = 2 : 3. Найдите отношение соседних сторон параллелограмма.

ВверхВниз   Решение


Дан треугольник ABC. Найдите множество центров прямоугольников PQRS, вершины Q и P которых лежат на стороне AC, вершины R и S — на сторонах AB и BC соответственно.

ВверхВниз   Решение


В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.

ВверхВниз   Решение


На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны.

ВверхВниз   Решение


В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Найдите его медиану, проведённую из вершины P.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 80]      



Задача 56787

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 8,9,10

Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.
Прислать комментарий     Решение


Задача 110924

Темы:   [ Площадь трапеции ]
[ Экстремальные свойства (прочее) ]
[ Неравенства с площадями ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10,11

На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.
Прислать комментарий     Решение


Задача 111781

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с площадями ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Прислать комментарий     Решение


Задача 58212

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на параллелограммы ]
[ Неравенства с площадями ]
[ Целочисленные решетки (прочее) ]
Сложность: 5
Классы: 9,10

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.
Прислать комментарий     Решение


Задача 110751

Темы:   [ Выпуклые многоугольники ]
[ Выпуклый анализ и линейное программирование ]
[ Неравенства с площадями ]
[ Индукция в геометрии ]
[ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5+
Классы: 10,11

Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .