ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В угол с вершиной A , равный 60o , вписана окружность с центром O . К этой окружности проведена касательная, пересекающая стороны угла в точках B и C . Отрезок BC пересекается с отрезком AO в точке M . Найдите радиус окружности, вписанной в треугольник ABC , если AM:MO = 2:3 и BC = 7 .

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 211]      



Задача 116086

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вписанные и описанные окружности ]
[ Отношения линейных элементов подобных треугольников ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 10,11

В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.

Прислать комментарий     Решение

Задача 52727

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

Докажите, что площадь треугольника можно выразить по формуле S = (p - a) ra , где ra — радиус вневписанной окружности, касающейся стороны, равной a , p — полупериметр треугольника.
Прислать комментарий     Решение


Задача 52924

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9

В треугольнике KLM точка B — центр вписанной окружности, а точка C — центр окружности, описанной около треугольника KLM. Прямая BC перпендикулярна биссектрисе MB треугольника KLM. Известно, что угол BMC равен $ \gamma$. Найдите углы треугольника KLM.

Прислать комментарий     Решение


Задача 54930

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

В угол с вершиной A , равный 60o , вписана окружность с центром O . К этой окружности проведена касательная, пересекающая стороны угла в точках B и C . Отрезок BC пересекается с отрезком AO в точке M . Найдите радиус окружности, вписанной в треугольник ABC , если AM:MO = 2:3 и BC = 7 .
Прислать комментарий     Решение


Задача 57607

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9

Докажите, что  rarb + rbrc + rcra = p2.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 211]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .