Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Город считается миллионером, если в нем живет более миллиона человек. Вероятность какого события больше:
  A = {наугад выбранный городской житель живет в городе миллионере} или
  B = {наугад выбранный город – город-миллионер}?

Возьмите статистику численности городского населения России с сайта http://www.perepis2002.ru/ct/doc/1_TOM_01_05.xls. Проверьте, справедлив ли для России ваш вывод, сделанный ранее. Для этого подсчитайте вероятность того, что наугад выбранный городской житель живёт в городе-миллионере, и вероятность того, наугад выбранный город – миллионер, и сравните их.

Вниз   Решение


Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

ВверхВниз   Решение


На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок).
Докажите, что прямые, соединяющие вершины треугольника ABC с соответствующими вершинами треугольника A1B1C1, пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что первые три цифры частного     суть 0,239.

ВверхВниз   Решение


Найдите ближайшее целое число к числу x, если  x = .

ВверхВниз   Решение


В круг радиуса 1 вписан пятиугольник. Докажите, что сумма длин его сторон и диагоналей меньше 17.

ВверхВниз   Решение


Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

ВверхВниз   Решение


На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

ВверхВниз   Решение


Пусть AB – диаметр окружности, C – некоторая точка плоскости. Прямые AC и BC пересекают окружность в точках M и N соответственно. Прямые MB и NA пересекаютcя в точке K. Найдите угол между прямыми CK и AB.

ВверхВниз   Решение


На завтрак Карлсон съел 40% торта, а Малыш съел 150 г. На обед Фрекен Бок съела 30% остатка и ещё 120 г, а Матильда вылизала оставшиеся 90 г крошек от торта. Какой массы был торт изначально?

ВверхВниз   Решение


Аня, Ваня и Саня сели в автобус, не имея медных монет, однако сумели заплатить за проезд, потратив по пять копеек каждый. Как им это удалось?

ВверхВниз   Решение


На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 116349

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
Сложность: 3-
Классы: 8,9,10

Точка M расположена на стороне AB параллелограмма ABCD, причём  BM : MA = 1 : 2.  Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.

Прислать комментарий     Решение

Задача 116357

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четырехугольники (прочее) ]
Сложность: 3-
Классы: 8,9,10

На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 54956

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Отношения площадей ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение


Задача 54954

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Прислать комментарий     Решение

Задача 55000

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .