ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Найдите отношение радиусов двух окружностей, касающихся между
собой, если каждая из них касается сторон угла,
равного
Основание треугольника равно 36. Прямая, параллельная основанию, делит площадь треугольника пополам. |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 462]
Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.
В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
В квадрате ABCD площади 1 сторона AD продолжена за точку D и на продолжении взята точка O, OD = 3. Из точки O проведены два луча. Первый пересекает отрезок CD в точке M и отрезок AB в точке N, второй пересекает отрезок CD в точке L и отрезок BC в точке K, ON = a, ∠BKL = α. Найдите площадь многоугольника BKLMN.
В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке