ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Геометрические неравенства
>>
Неравенство треугольника
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в любом треугольнике сумма длин его медиан больше периметра, но меньше периметра. Решение |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]
В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC.
Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.
На прямой расположены три точки A, B и C, причём AB = BC = 3. Три окружности радиуса R имеют центры в точках A, B и C.
Докажите, что в любом треугольнике сумма длин его медиан больше периметра, но меньше периметра.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|