ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.
Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово. AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL . Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых. В прямоугольном треугольнике медианы, проведённые из вершин острых углов,
равны
Пусть AA1 и BB1 — медианы треугольника ABC. Докажите,
что
AA1 + BB1 >
Докажите, что площадь трапеции равна произведению средней линии на высоту.
Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведённых из той же вершины.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.
Точка D – середина основания AC равнобедренного треугольника ABC . Точка E – основание перпендикуляра, опущенного из точки D на сторону BC . Отрезки AE и BD пересекаются в точке F . Установите, какой из отрезков BF и BE длиннее.
Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведённых из той же вершины.
Внутри треугольника ABC взята точка M. Докажите, что
AM . BC + BM . AC + CM . AB
где S — площадь треугольника ABC.
Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке