ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999? Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?
Докажите тождество:
13 + 23 +...+ n3 = (1 + 2 +...+ n)2.
а) Из точки A проведены прямые, касающиеся
окружности S в точках B и C. Докажите, что центр вписанной
окружности треугольника ABC и центр его вневписанной
окружности, касающейся стороны BC, лежат на окружности S.
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
На сторонах угла ABC, равного 120o, отложены отрезки AB = BC = 4. Через точки A, B, C проведена окружность. Найдите её радиус.
На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой? Докажите, что в треугольнике угол A острый тогда и
только тогда, когда ma > a/2.
cos
Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что AM = 3, BM = 4 и CM = 6. Найдите CD.
Угол с вершиной C равен 120o. Окружность радиуса R касается сторон угла в точках A и B. Найдите AB.
Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки. Имеются 552 гири весом 1г, 2г, 3г, ..., 552г. Разложите их на три равные по весу кучки. Периодом дроби 1/7 является число N = 142857. Оно обладает следующим свойством: сумма двух половин периода – число из одних девяток
В четырёхугольнике ABCD углы A и B равны, а
|
Страница: << 1 2 3 >> [Всего задач: 13]
В четырёхугольнике ABCD углы A и B равны, а
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?
На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
Страница: << 1 2 3 >> [Всего задач: 13]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке