ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены
высоты AA1 и CC1. Точки A2 и C2 симметричны A1 и C1
относительно середин сторон BC и AB. Докажите, что прямая,
соединяющая вершину B с центром O описанной окружности, делит
отрезок A2C2 пополам.
Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов? В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко. Найдите остаток от деления многочлена P(x) = x81 + x27 + x9 + x³ + x на Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами? Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω. Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.
В треугольнике ABC высота AH равна h,
|
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1331]
Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?
Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен r, а половина периметра равна p. Найдите гипотенузу.
В равнобедренном треугольнике основание равно 30, а боковая сторона равна 39. Найдите радиус вписанной окружности.
В треугольнике ABC высота AH равна h,
Точка C лежит на стороне MN ромба KLMN, причём CN = 2CM и угол MNK равен 120o. Найдите отношение косинусов углов CKN и CLM.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1331]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке