ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 829]      



Задача 55021

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если  BD = 6,  AD : DC = 2 : 7.

Прислать комментарий     Решение

Задача 55202

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Неравенства с векторами ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Отрезок, соединяющий середины двух противоположных сторон выпуклого четырёхугольника, равен полусумме двух других сторон.
Докажите, что этот четырёхугольник – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 55458

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Задача 55513

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Прямая l пересекает окружность с диаметром AB в точках C и D, отличных от A и B. Из точек A и B к прямой l проведены перпендикуляры AE и BF соответственно. Докажите, что  CE = DF.

Прислать комментарий     Решение

Задача 55700

Темы:   [ ГМТ - прямая или отрезок ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, сумма расстояний от которых до сторон этого угла равна данной величине a.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .