ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что трапеция является равнобедренной тогда и только тогда, когда около неё можно описать окружность.

   Решение

Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1275]      



Задача 55119

Темы:   [ Отношение площадей подобных треугольников ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

AB — диаметр; BC и AC — хорды, причем $ \cup$ BC = 60o; D — точка пересечения продолжения диаметра AB и касательной CD. Найдите отношение площадей треугольников DCB и DCA.

Прислать комментарий     Решение


Задача 55556

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Докажите, что трапеция является равнобедренной тогда и только тогда, когда около неё можно описать окружность.

Прислать комментарий     Решение


Задача 101901

Темы:   [ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC биссектрисы углов при вершинах A и C пересекаются в точке D. Найдите радиус описанной около треугольника ABC окружности, если радиус окружности с центром в точке O, описанной около треугольника ADC, равен R = 6, и $ \angle$ACO = 30o.
Прислать комментарий     Решение


Задача 101902

Темы:   [ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

В окружность с центром в точке O вписан треугольник EGF, у которого угол $ \angle$EFG -- тупой. Вне окружности находится такая точка L, что $ \angle$LEF = $ \angle$FEG, $ \angle$LGF = $ \angle$FGE. Найдите радиус описанной около треугольника ELG окружности, если площадь треугольника EGO равна 81$ \sqrt{3}$ и $ \angle$OEG = 60o.
Прислать комментарий     Решение


Задача 35756

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса делит дугу пополам ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.
Прислать комментарий     Решение


Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .