ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 829]      



Задача 53865

Темы:   [ Биссектриса угла ]
[ Подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1. Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 54180

Темы:   [ Необычные построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Одним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон.

Прислать комментарий     Решение

Задача 54389

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
Найдите площадь треугольника ABC, если  AQ : AB = 2 : 3.

Прислать комментарий     Решение

Задача 55587

Темы:   [ Окружность, вписанная в угол ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.

Прислать комментарий     Решение

Задача 55722

Темы:   [ Удвоение медианы ]
[ Поворот помогает решить задачу ]
[ Перпендикулярные прямые ]
Сложность: 4-
Классы: 8,9

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .