ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 5266]      



Задача 56528

Темы:   [ Подобные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

Прислать комментарий     Решение

Задача 56533

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Задача 56534

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Задача 56831

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Пусть Oa, Ob и Oc — центры вневписанных окружностей треугольника ABC. Докажите, что точки A, B и C — основания высот треугольника OaObOc.
Прислать комментарий     Решение


Задача 56832

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Докажите, что сторона BC треугольника ABC видна из центра O вписанной окружности под углом  90o + $ \angle$A/2, а из центра Oa вневписанной окружности под углом  90o - $ \angle$A/2.
Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 5266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .