ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все углы треугольника ABC меньше  120o. Докажите, что внутри его существует точка, из которой все стороны треугольника видны под углом  120o.


   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1275]      



Задача 54830

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой  CD = 3  и  sin∠ACD·sin∠BCD = 1/3.  Найдите расстояние от точки D до хорды AB.

Прислать комментарий     Решение

Задача 56548

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Все углы треугольника ABC меньше  120o. Докажите, что внутри его существует точка, из которой все стороны треугольника видны под углом  120o.


Прислать комментарий     Решение

Задача 56550

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

На окружности даны точки A, B, M и N. Из точки M проведены хорды MA1 и MB1, перпендикулярные прямым NB и NA соответственно. Докажите, что  AA1 || BB1.
Прислать комментарий     Решение


Задача 56551

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Две окружности пересекаются в точках P и Q. Третья окружность с центром P пересекает первую окружность в точках A и B, а вторую — в точках C и D. Докажите, что $ \angle$AQD = $ \angle$BQC.
Прислать комментарий     Решение


Задача 56552

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Шестиугольник ABCDEF вписанный, причем  AB || DE и  BC || EF. Докажите, что  CD || AF.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .