ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности даны точки A, B, M и N. Из точки M проведены хорды MA1 и MB1, перпендикулярные прямым NB и NA соответственно. Докажите, что  AA1 || BB1.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1275]      



Задача 54830

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой  CD = 3  и  sin∠ACD·sin∠BCD = 1/3.  Найдите расстояние от точки D до хорды AB.

Прислать комментарий     Решение

Задача 56548

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Все углы треугольника ABC меньше  120o. Докажите, что внутри его существует точка, из которой все стороны треугольника видны под углом  120o.


Прислать комментарий     Решение

Задача 56550

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

На окружности даны точки A, B, M и N. Из точки M проведены хорды MA1 и MB1, перпендикулярные прямым NB и NA соответственно. Докажите, что  AA1 || BB1.
Прислать комментарий     Решение


Задача 56551

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Две окружности пересекаются в точках P и Q. Третья окружность с центром P пересекает первую окружность в точках A и B, а вторую — в точках C и D. Докажите, что $ \angle$AQD = $ \angle$BQC.
Прислать комментарий     Решение


Задача 56552

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 7,8

Шестиугольник ABCDEF вписанный, причем  AB || DE и  BC || EF. Докажите, что  CD || AF.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .