ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14. В окружности радиуса 1 проведено несколько хорд.
Докажите, что если каждый диаметр пересекает не более k
хорд, то сумма длин хорд меньше
Около четырёхугольника ABCD можно описать окружность. Кроме того, AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.
Даны четыре окружности
S1, S2, S3 и S4, причем
окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4
(S5 = S1). Докажите, что радикальная ось окружностей S1
и S3 проходит через точку пересечения общих внешних касательных
к S2 и S4.
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]
Даны четыре окружности
S1, S2, S3 и S4, причем
окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4
(S5 = S1). Докажите, что радикальная ось окружностей S1
и S3 проходит через точку пересечения общих внешних касательных
к S2 и S4.
а) Окружности S1 и S2 пересекаются в точках A
и B. Степень точки P окружности S1 относительно окружности S2
равна p, расстояние от точки P до прямой AB равно h, а
расстояние между центрами окружностей равно d. Докажите,
что | p| = 2dh.
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке