ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 78505

Темы:   [ Средняя линия треугольника ]
[ Пятиугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношение площадей подобных треугольников ]
[ Неравенства с площадями ]
Сложность: 5-
Классы: 8,9,10

A', B', C', D', E' — середины сторон выпуклого пятиугольника ABCDE. Доказать, что площади пятиугольников ABCDE и A'B'C'D'E' связаны соотношением:

SA'B'C'D'E'$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$SABCDE.

Прислать комментарий     Решение

Задача 58105

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Площадь круга, сектора и сегмента ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 6-
Классы: 8,9,10

В круге радиуса 16 расположено 650 точек. Докажите, что найдется кольцо с внутренним радиусом 2 и внешним радиусом 3, в котором лежит не менее 10 из данных точек.
Прислать комментарий     Решение


Задача 64340

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Площадь и ортогональная проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4-
Классы: 10,11

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Прислать комментарий     Решение

Задача 57845

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Выпуклые многоугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 8,9,10

Даны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести более n прямых, каждая из которых делит площадь n-угольника пополам.
Прислать комментарий     Решение


Задача 56788

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Неравенства с площадями ]
[ Площадь трапеции ]
[ Ортогональная (прямоугольная) проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 5-
Классы: 8,9,10

Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .