Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]
В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей.
Докажите, что прямые IL', I'L и высота CH треугольника ABC пересекаются в одной точке.
|
|
Сложность: 5- Классы: 8,9,10
|
Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем 1 + .
В треугольнике ABC на стороне AB выбраны точки K и L так,
что AK = BL, а на стороне BC — точки M и N так,
что CN = BM. Докажите, что KN + LM ≥ AC.
|
|
Сложность: 4+ Классы: 9,10
|
Даны две окружности, пересекающиеся в точках
P и
Q .
C – произвольная точка одной из окружностей, отличная от
P и
Q ;
A ,
B – вторые точки пересечения прямых
CP ,
CQ
с другой окружностью. Найдите геометрическое место центров
окружностей, описанных около треугольников
ABC .
|
|
Сложность: 4+ Классы: 8,9,10
|
Четырехугольник
ABCD описан около окружности с центром
I . Докажите, что проекции точек
B и
D на прямые
IA и
IC
лежат на одной окружности.
Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]