Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 5266]
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их
продолжения) пересекают прямую l в двух фиксированных точках.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.
Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.
Пусть
Oa,
Ob и
Oc — центры вневписанных
окружностей треугольника
ABC. Докажите, что точки
A,
B и
C — основания высот треугольника
OaObOc.
Докажите, что сторона
BC треугольника
ABC видна из
центра
O вписанной окружности под углом
90
o +
A/2, а из
центра
Oa вневписанной окружности под углом
90
o -
A/2.
Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 5266]