ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Замечательные точки и линии в треугольнике
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то BS/CS = c2/b2. Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1435]
На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1?
Через точку O пересечения биссектрис треугольника ABC проведены прямые, параллельные его сторонам. Прямая, параллельная AB, пересекает AC и BC в точках M и N, а прямые, параллельные AC и BC, пересекают AB в точках P и Q. Докажите, что MN = AM + BN и периметр треугольника OPQ равен длине отрезка AB.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1435] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|