ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Угол между сторонами AB и CD четырехугольника ABCD равен $ \varphi$. Докажите, что  AD2 = AB2 + BC2 + CD2 - 2(AB . BC cos B + BC . CD cos C + CD . AB cos$ \varphi$).

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 2247]      



Задача 57029

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

Угол между сторонами AB и CD четырехугольника ABCD равен $ \varphi$. Докажите, что  AD2 = AB2 + BC2 + CD2 - 2(AB . BC cos B + BC . CD cos C + CD . AB cos$ \varphi$).
Прислать комментарий     Решение


Задача 57030

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

В четырехугольнике ABCD стороны AB и CD равны, причем лучи AB и DC пересекаются в точке O. Докажите, что прямая, соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.
Прислать комментарий     Решение


Задача 57031

Тема:   [ Четырехугольники (прочее) ]
Сложность: 3
Классы: 9

На сторонах BC и AD четырехугольника ABCD взяты точки M и N так, что  BM : MC = AN : ND = AB : CD. Лучи AB и DC пересекаются в точке O. Докажите, что прямая MN параллельна биссектрисе угла AOD.
Прислать комментарий     Решение


Задача 64338

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 10,11

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.

Прислать комментарий     Решение

Задача 64420

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 9,10

Существует ли выпуклый четырёхугольник, у которого каждая диагональ не больше, чем любая сторона?

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .