ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 484]      



Задача 108981

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Симметрия и построения ]
Сложность: 5
Классы: 8,9

Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см и BE= 14 см. Найти на стороне BA такие две точки M и N , чтобы MN=3 см и DMN= MNE .
Прислать комментарий     Решение


Задача 111722

Темы:   [ Необычные построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8,9,10

Дан треугольник ABC и линейка, на которой отмечены два отрезка, равные AC и BC . Пользуясь только этой линейкой, найдите центр вписанной окружности треугольника, образованного средними линиями ABC .
Прислать комментарий     Решение


Задача 110768

Темы:   [ Построение треугольников по различным элементам ]
[ Гомотетичные окружности ]
[ Гомотетия: построения и геометрические места точек ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Формула Эйлера ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5+
Классы: 9,10,11

Постройте треугольник, если даны центр вписанной в него окружности, середина одной из сторон и основание опущенной на эту сторону высоты.
Прислать комментарий     Решение


Задача 57220

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5+
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.
Прислать комментарий     Решение


Задача 57253

Тема:   [ Окружности (построения) ]
Сложность: 5+
Классы: 8,9

Постройте окружность, равноудалённую от четырёх данных точек.
Прислать комментарий     Решение


Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .