ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
|
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 460]
Из внешней точки A проведены к кругу касательная AB и секущая ACD. Найдите площадь треугольника CBD, если AC : AB = 2 : 3 и площадь треугольника ABC равна 20.
Пусть E, F, G – такие точки на сторонах соответственно AB, BC, CA треугольника ABC, для которых AE : EB = BF : FC = CG : GA = k : 1, где 0 < k < 1. Найдите отношение площади треугольника, образованного прямыми AF, BG и CE, к площади треугольника ABC.
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|