ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB.
При каком положении точки O произведение dadbdc будет наибольшим?

   Решение

Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 460]      



Задача 110839

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектрисы AM и BK пересекаются в точке O. Площадь треугольника COK равна 3, угол BCA равен  arccos 5/13.  Найдите площадь треугольника COM и проекцию отрезка AM на прямую BC.

Прислать комментарий     Решение

Задача 110840

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектрисы CM и BK пересекаются в точке O. Площади треугольников BOM и AOM соответственно равны 25 и 40. Найдите площадь треугольника ABC и проекцию отрезка OM на прямую AB.

Прислать комментарий     Решение

Задача 110841

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектрисы CM и BK пересекаются в точке O. Площадь треугольника AOK равна 10, угол BCA равен  arccos 12/13.  Найдите площадь треугольника AOM и проекцию отрезка CM на прямую AB.

Прислать комментарий     Решение

Задача 111414

Темы:   [ Боковая поверхность тетраэдра и пирамиды ]
[ Свойства сечений ]
[ Правильная призма ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 10,11

Боковое ребро правильной треугольной призмы ABCA1B1C1 равно стороне основания ABC . Плоскость P пересекает стороны основания AB и AC и боковые рёбра CC1 и BB1 в точках K , L , M и N соответственно. Площади фигур AKL , CLM и CMNB равны , и площади грани, в которой каждая из них находится. В каком отношении плоскость P делит объём призмы?
Прислать комментарий     Решение


Задача 57538

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 8,9,10

Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB.
При каком положении точки O произведение dadbdc будет наибольшим?

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .