Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Разрежьте квадрат на 3 части, из которых можно сложить треугольник с 3 острыми углами и тремя различными сторонами.

Вниз   Решение


Богатый сенатор, умирая, оставил жену в ожидании ребёнка. После смерти сенатора выяснилось, что на своё имущество, равное 210 талантам, он составил следующее завещание: "В случае рождения сына отдать мальчику две трети состояния, а остальную треть – матери; в случае же рождения дочери отдать девочке одну треть состояния, а остальные две трети – матери". У вдовы сенатора родились близнецы – мальчик и девочка. Такой возможности завещатель не предусмотрел. Как можно разделить имущество между тремя наследниками с наилучшим приближением к условию завещания?

ВверхВниз   Решение


Полтора землекопа выкопали за полтора часа полторы ямы. Сколько ям выкопают два землекопа за два часа?

ВверхВниз   Решение


Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

ВверхВниз   Решение


Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

ВверхВниз   Решение


Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?

ВверхВниз   Решение


Одним пакетиком чая можно заварить два или три стакана чая. Мила и Таня разделили коробку чайных пакетиков поровну. Мила заварила 57 стаканов чая, а Таня – 83 стакана. Сколько пакетиков могло быть в коробке?

ВверхВниз   Решение


На доске написаны  n > 3  различных натуральных чисел, меньших чем  (n – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

ВверхВниз   Решение


Автор: Фольклор

Найти все целые решения уравнения  yk = x² + x  (k – натуральное число, большее 1).

ВверхВниз   Решение


В треугольнике ABC проведена прямая BD так, что   ∠ABD = ∠C.  Найдите отрезки AD и DC, если  AB = 2  и  AC = 4.

ВверхВниз   Решение


Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.

ВверхВниз   Решение


ABCD – данный параллелограмм. Через точку пересечения его диагоналей проведена перпендикулярная к BC прямая, которая пересекает BC в точке E, а продолжение AB – в точке F. Найдите BE, если  AB = a,  BC = b  и  BF = c.

ВверхВниз   Решение


Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 78278

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Основные свойства центра масс ]
[ Аналитический метод в геометрии ]
Сложность: 4
Классы: 8,9,10

На сторонах AB, BC, CA правильного треугольника ABC найти такие точки X, Y, Z (соответственно), чтобы площадь треугольника, образованного прямыми CX, BZ, AY, была вчетверо меньше площади треугольника ABC и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$
Прислать комментарий     Решение


Задача 57986

Темы:   [ Гомотетичные многоугольники ]
[ Основные свойства центра масс ]
Сложность: 4+
Классы: 9,10,11

Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.
Прислать комментарий     Решение


Задача 98097

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Исследование квадратного трехчлена ]
[ Геометрические интерпретации в алгебре ]
[ Основные свойства центра масс ]
Сложность: 3+
Классы: 9,10

Автор: Столов Е.

Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше  – 1/n.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .