Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.

Вниз   Решение


Пользуясь равенством lg11=1,0413, найдите наименьшее число n>1, для которого среди n-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.

ВверхВниз   Решение


Найдите ключ к "тарабарской грамоте"  — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"'  — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти".

ВверхВниз   Решение


На плоскости даны окружность S и точка P. Прямая, проведенная через точку P, пересекает окружность в точках A и B. Докажите, что произведение  PA . PB не зависит от выбора прямой.



ВверхВниз   Решение


Две окружности имеют радиусы R1 и R2, а расстояние между их центрами равно d. Докажите, что эти окружности ортогональны тогда и только тогда, когда  d2 = R12 + R22.

ВверхВниз   Решение


Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то

(b - a)/(c - a) = (b' - a')/(c' - a').


ВверхВниз   Решение


Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?

ВверхВниз   Решение


Доказать, что если     то  x4 + a1x³ + a2x² + a3x + a4  делится на  (x – x0)².

ВверхВниз   Решение


Найдите наибольшее значение выражения $\sin x \sin y \sin z + \cos x \cos y \cos z$.

ВверхВниз   Решение


а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.

ВверхВниз   Решение


Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос?

ВверхВниз   Решение


Федя всегда говорит правду, а Вадим всегда лжет. Какой вопрос надо было бы им задать, чтобы они дали на него одинаковые ответы?

ВверхВниз   Решение


В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

ВверхВниз   Решение


На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
  а)  S = M1M2 + M3 – ... + (–1)n + 1Mn;
  б)  SM1 - M2 + M3 – ... + (–1)m + 1Mm   при m чётном и
       SM1M2 + M3 – ... + (–1)m + 1Mm   при m нечётном.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 150]      



Задача 109595

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Таблицы и турниры (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10

В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

Прислать комментарий     Решение

Задача 117008

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

Прислать комментарий     Решение

Задача 117017

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Прислать комментарий     Решение

Задача 58106

Темы:   [ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 9,10,11

На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
  а)  S = M1M2 + M3 – ... + (–1)n + 1Mn;
  б)  SM1 - M2 + M3 – ... + (–1)m + 1Mm   при m чётном и
       SM1M2 + M3 – ... + (–1)m + 1Mm   при m нечётном.

Прислать комментарий     Решение

Задача 60445

Темы:   [ Формула включения-исключения ]
[ Принцип Дирихле (площадь и объем) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 10,11

В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
  а) две фигуры, площадь общей части которых не меньше 3/20;
  б) две фигуры, площадь общей части которых не меньше ⅕;
  в) три фигуры, площадь общей части которых не меньше 1/20.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 150]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .