ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6. Докажите, что при параллельном переносе окружность переходит в окружность.
Через каждую вершину параллеллограмма проведена прямая, перпендикулярная диагонали, не проходящей через эту вершину. Докажите, что диагонали четырёхугольника, образованного пересечениями четырёх проведённых прямых, перпендикулярны сторонам параллелограмма. Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
В треугольнике ABC проведена высота BM, биссектриса BN и медиана BL. Известно, что AM = MN = NL. Найдите тангенс угла A этого треугольника.
Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см. В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра AA1 = a и
BB1 = b. В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ. В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).
В треугольнике ABC биссектриса угла BAC пересекает сторону BC в точке M. Известно, что AB = BC = 2AC, AM = 4. Найдите площадь треугольника ABC.
В равнобедренной трапеции ABCD AB = CD = 3, основание
AD = 7, ∠BAD = 60°. На диагонали BD расположена точка M так, что BM : MD = 3 : 5. Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками.
Докажите, что среди них можно выбрать несколько попарно
непересекающихся отрезков, сумма длин которых не меньше 0,5.
|
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 489]
На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).
Докажите, что если
для некоторых a , b , c , x , y , z , то x=y=z или a=b=c .
Выпуклый многоугольник M переходит в себя при повороте
на угол 90o . Докажите, что найдутся два круга с отношением радиусов,
равным
Докажите, что для треугольника со сторонами a , b , c
и площадью S выполнено неравенство
Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками.
Докажите, что среди них можно выбрать несколько попарно
непересекающихся отрезков, сумма длин которых не меньше 0,5.
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 489]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке