Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

ВверхВниз   Решение


Через точку A проведена прямая l, пересекающая окружность S с центром O в точках M и N и не проходящая через O. Пусть M' и N' — точки, симметричные M и N относительно OA, а A' — точка пересечения прямых MN' и M'N. Докажите, что A' совпадает с образом точки A при инверсии относительно S (и, следовательно, не зависит от выбора прямой l).

ВверхВниз   Решение


По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?

ВверхВниз   Решение


В одной урне лежат два белых шара, в другой два черных, в третьей - один белый и один черный. На каждой урне висела табличка, указывающее ее содержимое: ББ, ЧЧ, БЧ. Некто перевесил таблички так, что теперь каждая табличка указывает содержимое урны неправильно. Разрешается вынуть шар из любой урны, не заглядывая в нее. Какое наименьшее число извлечений потребуется, чтобы определить состав всех трех урн?

ВверхВниз   Решение


Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 58325

Темы:   [ Свойства инверсии ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 7
Классы: 9,10,11

Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.
Прислать комментарий     Решение


Задача 58326

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 116093

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку.
Прислать комментарий     Решение


Задача 116096

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей.
Прислать комментарий     Решение


Задача 116097

Темы:   [ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .