ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Вниз   Решение


Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.

ВверхВниз   Решение


Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда центры этих поворотных гомотетий совпадают.

ВверхВниз   Решение


С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



Задача 58321

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10

Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.
Прислать комментарий     Решение


Задача 58326

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 58339

Темы:   [ Теорема Мора-Маскерони ]
[ Построения одним циркулем ]
Сложность: 4
Классы: 9,10,11

С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

Прислать комментарий     Решение

Задача 58342

Тема:   [ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10

Докажите, что инверсия с центром в вершине A равнобедренного треугольника ABC (AB = AC) и степенью AB2 переводит основание BC треугольника в дугу BC описанной окружности.
Прислать комментарий     Решение


Задача 58349

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 4
Классы: 9,10

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .