ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно. В прямоугольном треугольнике $ABC$ (угол $C$ прямой) $BC=2AC$, $CH$ – высота, $O_1$ и $O_2$ – центры окружностей, вписанных соответственно в треугольники $ACH$ и $BCH$, а $O$ – центр окружности, вписанной в треугольник $ABC$. Пусть $H_1$, $H_2$ и $H_0$ – проекции точек $O_1$, $O_2$ и $O$ на гипотенузу. Докажите, что $H_1H=HH_0=H_0H_2$. Дано несколько выпуклых многоугольников, причем
нельзя провести прямую так, чтобы она не пересекала ни
одного многоугольника и по обе стороны от нее лежал
хотя бы один многоугольник. Докажите, что эти многоугольники
можно заключить в многоугольник, периметр которого
не превосходит суммы их периметров.
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее. На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1010]
У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?
Из двух математиков и десяти экономистов надо составить комиссию из восьми человек.
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой (4, 0, 0, 0) и заканчивая самой пологой (1, 1, 1, 1).
а) Диаграммы Юнга (4, 1, 1) и (3, 3, 0) не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6? б) Найдите все несравнимые пары наборов для s = 7. Про диаграммы Юнга смотри здесь.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке