Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Вниз   Решение


В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.

ВверхВниз   Решение


Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

ВверхВниз   Решение


Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?

ВверхВниз   Решение


На столе лежат 8 всевозможных горизонтальных полосок 1×3 из трёх квадратиков 1×1, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)

ВверхВниз   Решение


Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

ВверхВниз   Решение


В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

ВверхВниз   Решение


В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

ВверхВниз   Решение


В ряд записаны  n>2  различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим n числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться n?

ВверхВниз   Решение


Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

ВверхВниз   Решение


Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

ВверхВниз   Решение


Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

ВверхВниз   Решение


Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых.
Сколько параллелограммов можно выделить в образовавшейся сетке?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]      



Задача 34943

Тема:   [ Сочетания и размещения ]
Сложность: 3-

План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?

Прислать комментарий     Решение

Задача 34981

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков ]
Сложность: 3-
Классы: 8,9

Известно, что в выпуклом n-угольнике  (n > 3)  никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.

Прислать комментарий     Решение

Задача 60383

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3-
Классы: 8,9

На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Прислать комментарий     Решение

Задача 60397

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 3-
Классы: 8,9,10

Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых.
Сколько параллелограммов можно выделить в образовавшейся сетке?

Прислать комментарий     Решение

Задача 60403

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 9,10


Имеется m белых и n чёрных шаров, причём  m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .