ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что если (x+)(y+)=1 , то x+y=0 .

Вниз   Решение


Площадь равнобедренной трапеции, описанной около окружности, равна S. Найдите среднюю линию трапеции, если острый угол при её основании равен $ \alpha$.

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   .

ВверхВниз   Решение


Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

ВверхВниз   Решение


Число n! разложено в произведение простых чисел:     Докажите равенство  

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 420]      



Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 116254

Темы:   [ Показательные уравнения ]
[ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите такое значение $a > 1$,  при котором уравнение  $a^x = \log_a x$  имеет единственное решение.

Прислать комментарий     Решение

Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 60553

 [Формула Лежандра]
Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Число n! разложено в произведение простых чисел:     Докажите равенство  

Прислать комментарий     Решение

Задача 60624

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 10,11

Докажите, что если квадратное уравнение с целыми коэффициентами имеет корень  [],  то вторым корнем служит число   

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .