Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Вниз   Решение


В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

ВверхВниз   Решение


Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)

ВверхВниз   Решение


Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

ВверхВниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

ВверхВниз   Решение


На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.

ВверхВниз   Решение


В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если  AB = BC = 12,  AC = 6.

ВверхВниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.

ВверхВниз   Решение


Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

ВверхВниз   Решение


В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

ВверхВниз   Решение


В треугольник ABC вписан ромб ADEF так, что угол A у них общий, а вершина E находится на стороне BC. Найдите сторону ромба, если  AB = c  и  AC = b.

ВверхВниз   Решение


Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.

ВверхВниз   Решение


Из четырёх фотографий можно составить три различных прямоугольника (см. рис.). Периметр какого-то одного из них равен 56 см. Найдите периметры остальных двух прямоугольников, если периметр фотографии равен 20 см.

                       

ВверхВниз   Решение


В треугольнике ABC  AC ≤ 3,  BC ≤ 4,  SABC ≥ 6.  Найдите радиус его описанной окружности.

ВверхВниз   Решение


Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

ВверхВниз   Решение


Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



Задача 32859

Темы:   [ Ориентированные графы ]
[ Обход графов ]
Сложность: 2+
Классы: 7

В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

Прислать комментарий     Решение

Задача 98000

Темы:   [ Развертка помогает решить задачу ]
[ Обход графов ]
[ Наглядная геометрия в пространстве ]
[ Куб ]
Сложность: 3-
Классы: 8,9,10

Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Прислать комментарий     Решение

Задача 31079

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

Прислать комментарий     Решение

Задача 60635

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

Прислать комментарий     Решение

Задача 77930

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 3
Классы: 8,9

На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .