Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что если  а < 1,  b < 1  и  a + b ≥ 0,5,  то  (1 – a)(1 – b) ≤ 9/16.

Вниз   Решение


Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно выбрать несколько попарно непересекающихся кругов, сумма площадей которых больше $ {\frac{1}{9}}$. (Сравни с задачей 78201.)

ВверхВниз   Решение


В равнобедренной трапеции высота равна 10, а диагонали взаимно перпендикулярны. Найдите среднюю линию трапеции.

ВверхВниз   Решение


Окружности с центрами O1 и O2 касаются внешним образом в точке K. Некоторая прямая касается этих окружностей в различных точках A и B и пересекает их общую касательную, проходящую через точку K, в точке M. Докажите, что $ \angle$O1MO2 = $ \angle$AKB = 90o.

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


Площадь треугольника ABC равна 1, AC = 2BC, точка K — середина стороны AC. Окружность с центром в точке K пересекает сторону AB в точках M и N, при этом AM = MN = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.

ВверхВниз   Решение


10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
  а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

ВверхВниз   Решение


a, b, c ≥ 0.  Докажите, что   .

ВверхВниз   Решение


Около окружности описана равнобедренная трапеция с углом 30o . Её средняя линия равна 10. Найдите радиус окружности.

ВверхВниз   Решение


Известно, что  (m, n) > 1.  Что больше φ(mn) или  φ(m)φ(n)?  Определение функции φ(n) см. в задаче 60758.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



Задача 60770

Тема:   [ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

Известно, что  (m, n) > 1.  Что больше φ(mn) или  φ(m)φ(n)?  Определение функции φ(n) см. в задаче 60758.

Прислать комментарий     Решение

Задача 60771

Тема:   [ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 9,10,11

Пусть τ(n) – количество положительных делителей натурального числа n. Решите уравнение  a = 2τ(a).

Прислать комментарий     Решение

Задача 60774

Темы:   [ Функция Эйлера ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 9,10,11

Выпишем в ряд все правильные дроби со знаменателем n и сделаем возможные сокращения. Например, для  n = 12  получится следующий ряд чисел:  0/1, 1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12  Сколько получится дробей со знаменателем d, если d – некоторый делитель числа n?

Прислать комментарий     Решение

Задача 60776

Темы:   [ Функция Эйлера ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9,10

Окружность разделена n точками на n равных частей. Сколько можно составить различных замкнутых ломаных из n равных звеньев с вершинами в этих точках?

Прислать комментарий     Решение

Задача 64830

Тема:   [ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 8,9,10

Петя нашел сумму всех нечётных делителей некоторого чётного числа (включая 1), а Вася – сумму всех чётных делителей этого же числа (включая само число). Может ли произведение двух найденных чисел быть точным квадратом?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .