ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки. Решение |
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416]
Длины сторон треугольника являются корнями кубического уравнения с рациональными коэффициентами.
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
m и n – натуральные числа, m < n. Докажите, что
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|