ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство Решение |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 211]
Высота прямоугольного треугольника, опущенная на гипотенузу, делит этот треугольник на два треугольника. Расстояние между центрами вписанных окружностей этих треугольников равно 1. Найдите радиус вписанной окружности исходного треугольника.
Даны три точки A, B, C. С помощью циркуля и линейки постройте три окружности, попарно касающиеся в этих точках.
Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство
Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.
Длины сторон треугольника образуют арифметическую прогрессию.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|