ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?

Вниз   Решение


Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 4, а длина каждого бокового ребра AA1 , BB1 , CC1 , DD1 равна 6. Прямой круговой цилиндр расположен так, что его ось лежит в плоскости BB1D1D , а точки A1 , C1 , B1 и центр O квадрата ABCD лежат на боковой поверхности цилиндра. Найдите радиус цилиндра (найдите все решения).

ВверхВниз   Решение


В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

ВверхВниз   Решение


Стороны треугольника равны 1 и 2, а угол между ними равен 60o. Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите её радиус.

ВверхВниз   Решение


Дайте геометрическую интерпретацию следующих неравенств:
  а)  |z + w| ≤ |z| + |w|;   б)  |z – w| ≥ ||z| – |w||;   в)  |z – 1| ≤ |arg z|,  если  |z| = 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]      



Задача 61065

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

Прислать комментарий     Решение

Задача 61066

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)     б)     в)     г)     д)  

Прислать комментарий     Решение

Задача 61067

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)  z + = 2Re z;   б)  z = 2i Im z;   в)  z = |z|2.

Прислать комментарий     Решение

Задача 61175

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2
Классы: 10,11

Пусть z1 и z2 – фиксированные точки комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
  а)  arg = 0;   б)  arg = 0.

Прислать комментарий     Решение

Задача 61068

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 9,10,11

Дайте геометрическую интерпретацию следующих неравенств:
  а)  |z + w| ≤ |z| + |w|;   б)  |z – w| ≥ ||z| – |w||;   в)  |z – 1| ≤ |arg z|,  если  |z| = 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .