ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Медианы треугольника ABC разрезают его на 6 треугольников. Докажите, что
центры описанных окружностей этих треугольников лежат на одной окружности.
Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то
точки пересечения продолжений его противоположных сторон (т. е. прямых AB и
DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).
Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n. Докажите, что произвольное уравнение третьей степени z³ + Az² + Bz + C = 0 при помощи линейной замены переменной z = x + β можно привести к виду x3 + px + q = 0. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]
Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям
Докажите, что произвольное уравнение третьей степени z³ + Az² + Bz + C = 0 при помощи линейной замены переменной z = x + β можно привести к виду x3 + px + q = 0.
Выразите через a и b действительный корень уравнения x³ – a³ – b³ – 3abx = 0.
Докажите, что (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ, если X = ax + cy + bz, Y = cx + by + az, Z = bx + ay + cz.
Решите уравнение x³ + x – 2 = 0 подбором и по формуле Кардано.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке