ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]      



Задача 61100

Темы:   [ Многочлены Чебышева ]
[ Тригонометрия (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 9,10,11

Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

Прислать комментарий     Решение

Задача 61253

Тема:   [ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

Прислать комментарий     Решение

Задача 61260

Тема:   [ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Выразите через a и b действительный корень уравнения  x³ – a³ – b³ – 3abx = 0.
Найдите представления для двух комплексных корней этого уравнения.

Прислать комментарий     Решение

Задача 61261

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Докажите, что   (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ,

если   X = ax + cy + bz,   Y = cx + by + az,   Z = bx + ay + cz.

Прислать комментарий     Решение

Задача 61263

Темы:   [ Кубические многочлены ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3
Классы: 9,10,11

Решите уравнение  x³ + x – 2 = 0  подбором и по формуле Кардано.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .