ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите сумму  Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 965]      



Задача 61256

Тема:   [ Кубические многочлены ]
Сложность: 3+
Классы: 8,9,10

Решите уравнение  x³ + x² + x = – 1/3.

Прислать комментарий     Решение

Задача 61265

Темы:   [ Кубические многочлены ]
[ Уравнения высших степеней (прочее) ]
[ Производная и экстремумы ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 10,11

При всех значениях параметра a найдите число действительных корней уравнения  x³ – x – a = 0.

Прислать комментарий     Решение

Задача 61437

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

Прислать комментарий     Решение

Задача 61523

Темы:   [ Многочлены Гаусса ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при  x = 1.  Но, поскольку функции gk,l(x) являются многочленами, они определены и при  x = 1.  Докажите равенство  

б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение  x = 1?

Прислать комментарий     Решение

Задача 61524

Тема:   [ Многочлены Гаусса ]
Сложность: 3+
Классы: 10,11

Найдите сумму  Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .