ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 965]      



Задача 61045

Темы:   [ Теорема Виета ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 10,11

Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Прислать комментарий     Решение

Задача 61055

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3+
Классы: 8,9,10

Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Прислать комментарий     Решение

Задача 61101

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

Прислать комментарий     Решение

Задача 61254

Темы:   [ Кубические многочлены ]
[ Графики и ГМТ на координатной плоскости ]
[ Четность и нечетность ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

Докажите, что график многочлена
  а)  x³ + px;   б)  x³ + px + q;   в)  ax³ + bx² + cx + d
имеет центр симметрии.

Прислать комментарий     Решение

Задача 61255

Тема:   [ Кубические многочлены ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство + = 1.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .